Why Natural Language Processing Will Change Everything

by   |   August 2, 2016 5:30 am   |   5 Comments

Bernard Marr

Bernard Marr

Do you talk to your computer or smartphone? Just a few years ago, that question would have been absurd. But with advances in natural language processing, the likelihood is that you have asked your phone to send a text or search the web for something within the last day.

In fact, natural language processing (NLP) is one aspect of machine learning, big data, and artificial intelligence that has the potential to truly change everything.

In its most basic terms, natural language processing is the ability of a computer to understand natural human speech as it is spoken. It’s the difference between saying, “Siri, where’s the nearest coffee shop?” and, “Search coffee shops ZIP Code 80021.”

For a long time, searches online had to be done by typing in strings of words combined with Boolean search terms that ended up looking and sounding nothing like a conversation. Now, however, you can type a question into Google exactly how you’d ask it to a friend, and Google can reliably provide a good answer.

The same recognition of natural language is being developed for speech. AI assistants like Siri, Cortana, and Google Now are good examples of this.

While it seems simple for a human to answer a natural language question, it’s an incredibly complex task for a computer, requiring many steps computations and predictions, all of which must happen in the cloud and in a split-second.

The fascinating thing is that, while a human inherently understands what is being said, a computer cannot really be said to understand language. It can parse out the different words, the context, the grammatical usage, etc. and then make a prediction about which response will be the best, but it does not actually understand what we are saying.

Related Stories

Natural-Language Processing Evolves into Vital Technology.
Read the story »

Text Analytics Could Unlock Strategic Value Hidden in Speech.
Read the story »

Break Down the Language Barrier in Your Data [Podcast].
Read the story »

How to Impose Structure on Unstructured Data.
Read the story »

One goal of NLP is to do away with computer programming languages like Java, Ruby, or C and replace them with natural human instructions and speech. Another ultimate goal is realistic artificial intelligence, wherein the computer can react to and interact with a human flawlessly.

How NLP is Being Used 

Computer “assistants” like Siri and Cortana are the most visible use of NLP today, but there are many other applications of NLP in use. As mentioned above, Google has poured a great deal of resources into NLP as it relates to search, allowing us to type or speak a natural question and receive a relevant answer. Google also is using NLP to create predictive text responses to emails in its Inbox email client, allowing users to choose from one of three responses and respond to an email with a single click.

You may have used NLP for yourself if you have ever used the “translate” link inside Facebook to translate a foreign language into your own (with varying results) or used Google translate on Google or Bing search results. A reliable machine translation has been a goal of NLP since the 1950s, and results are improving all the time.

Other programs are being developed and used that can automatically summarize long documents or extract relevant keywords for searching. The legal system is using these types of applications, for example, to help lawyers sort through thousands of pages of documents in any given legal case to find relevant information.

Marketers are using NLP for sentiment analysis, combing the millions of tweets and other social media messages to determine how users feel about a particular product or service. It has the potential to turn all of Twitter or Facebook into one giant focus group, at a fraction of the cost.

Another way you likely use NLP daily in your life is with text classification – which is what Google and other email providers use to determine if an email is spam or not. This is a very simple binary classification: an email either is spam or it isn’t. But more sophisticated forms are being used for such complex analyses as determining the author of a work by comparing it to other works.

Companies are predicting that chatbots will be able to take over some customer-service functions in as little as five years, providing automated, real-time responses to simple customer-service problems and questions.

Integrations also are being developed for particular situations and users. For example, one company has developed an interface for the Amazon Echo that can allow business leaders to track key performance metrics. In fact, when the system is set up, a colored light bulb in an office can be used to visualize those metrics. One user set the system to monitor hold times for customer service, and when the light bulb goes red, he knows there is a problem that needs to be addressed immediately.

How NLP will Change Things in the Future

Imagine a future that looks like Star Trek or The Jetsons, where people are constantly talking to their house (or space ship), requesting information, giving commands, and so on. That future is not far off.  Other science-fiction staples, like a universal translator and robots that can speak and react to spoken commands, also will be made possible by accurate NLP.

But the main potential I see is in how we interact with everyday technologies. Will we read text messages and emails when our virtual assistant can simply read them for us? Will we shop and place orders for groceries through our smart refrigerators and tell the washing machine to call a repairman for itself when it breaks? All of these scenarios are right around the corner.

What do you think is the most exciting current or future use of NLP? I’d love to hear your thoughts and predictions in the comments below.

Bernard Marr is a bestselling author, keynote speaker, strategic performance consultant, and analytics, KPI, and big data guru. In addition, he is a member of the Data Informed Board of Advisers. He helps companies to better manage, measure, report, and analyze performance. His leading-edge work with major companies, organizations, and governments across the globe makes him an acclaimed and award-winning keynote speaker, researcher, consultant, and teacher.

Subscribe to Data Informed for the latest information and news on big data and analytics for the enterprise, plus get instant access to more than 20 eBooks.

Take a SMART Approach to Big Data Analytics

Tags: , , , , , , ,


  1. coury
    Posted August 3, 2016 at 5:09 am | Permalink

    NLP will continue to develop and integrate our lives at a fast pace but I would specify that it will first happen in our private environment. Indeed, one of the main obstacles for NLP growth (apart from technology) is the human factor. It (still) feels awkward to speak in public without any human counterpart. When 39% of US citizens say to use vocal command at home, they are only 6% to do it in public.

  2. Tilak Perala
    Posted August 4, 2016 at 7:06 am | Permalink

    excellent. We may also need a neutral(regional) accent recognition. It took me long time to train cortana. Even now it throws up some weird suggestions.

  3. Mary
    Posted August 17, 2016 at 7:49 pm | Permalink

    Consider NLP for the medical/healthcare world, where medical records are read and potential high-cost conditions and diseases are identified early using keywords.

  4. Zeynep Orhan
    Posted September 3, 2016 at 5:56 pm | Permalink

    Yes I aggree about the potential applications of NLP and they will be very helpful for humanity. However, it is not an easy task, and the ultimate products are not so close as claimed here. It will take a long long time to achieve these goals (if they are not totally impossible). Mimicking the behavior of the human can only be possible by understanding the whole mechanisms of humans, which seems to be beyond current and near-future researches. A human being is a hard-to-solve mystery.

    I am also studying NLP and my ultimate expectation, or dream actually, from it is providing the environment of complete understanding and communication for everyone by removing the language-difference barrier. When achieved, we will have a better and more peaceful world, if it is used properly for the mankind. Otherwise, just using it for market analysis, earning more, etc. will bring nothing.

  5. Paul davis
    Posted November 27, 2016 at 2:47 am | Permalink

    The industry at the forefront of bringing NLP to the average person is mobile devices but home assistants like Google Home and Amazon Echo will be the transition that makes people more comfortable.

    I believe the industry could make an enormous leap in making the technology more acceptable to people if they would put more effort in allowing people to personalize their assistant by giving it a name.

    Every single person I’ve talked to that uses Echo or now the Home have said how it’s always an annoyance in the back of their head that they have to use the company’s single “wake word” to interact. With Google you have to say “ok google” and no other input works. With Amazon you have to call it Alexa.

    We must be able to customize this in the future so that we can say “hey house” or “good morning Carl” or some version of that before there will be full acceptance.

    While they’re at it, let me pick a male voice. This isn’t 1950 and it’s ridiculous all the assistants defaults are female.

Post a Comment

Your email is never published nor shared. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>